

Using Atlas 14 Data with NRCS/SCS Methodology for MnDOT projects

Dec, 2015

We all have a stake in $A \oplus B$

Atlas 14 data with NRCS Methodology

- NRCS Hydrology methodology review
- Minnesota NRCS recommendation
- MnDOT recommendation
- Using Atlas 14 with HydroCAD

NRCS Hydrology

- NRCS Natural Resource Conservation Service (formerly known as SCS - Soil Conservation Service) developed/support rainfall/runoff hydrology method
- NRCS uses to design small agricultural ponds, waterways and erosion control
- NRCS Hydrology methods typically used by MnDOT and most others in Minnesota when hydrograph analysis needed such as pond design
- Also used by MnDOT for peak flow for most culverts where drainage area is smaller than what recommended for StreamStats

NRCS Hydrology

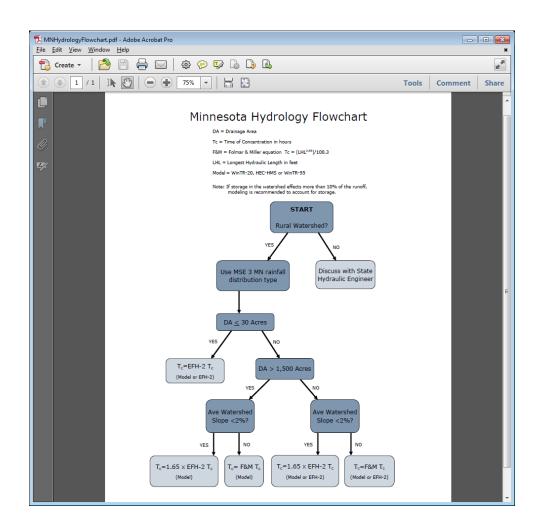
- NRCS/SCS Rainfall/Runoff Hydrology Method
 - Drainage Area
 - Curve Number based on land use and soil properties - proportion of precipitation that will runoff drainage area
 - 24 hour design precipitation
 - Time of Concentration time for water to flow from furthest part of watershed to design point
 - Rainfall distribution intensity of precipitation over time (24 hours)
 - Unit hydrograph rate of flow vs time for the runoff from the watershed

Minnesota NRCS Recommendation

 Recommendations for NRCS Area and Field Staff for NRCS projects for rural watersheds

http://www.nrcs.usda.gov/wps/PA_NRCSConsumption/download?cid=stelprdb1270686&ext=pdf

- Use Precipitation Depths from Atlas 14
- MSE 3 MN
 - MSE 3 rainfall distribution
 - Synthetic unit hydrograph with peak rate factor of 400
- Use Time of Concentration developed from Engineering Field Handbook (EFH2) or Folmar & Miller formula
- Flowchart



Minnesota NRCS Recommendation

MnDOT Application of NRCS Recommendation

- ▶ Tech Memo <u>15-10-B-02</u>
- Urban Areas
 - Stop using NRCS Type II Rainfall Distribution
 - Use Atlas 14 Rainfall Depth from PFDS server or NRCS County File
 - Use MSE 3 or Atlas 14 Derived Rainfall Distribution
 - Use SCS Typical Unit Hydrograph (peak factor 484)
 - Use Time of Concentration formulas from Drainage Manual/TR-55
 - Route flow (hydrograph analysis) where have storage

MnDOT Application of NRCS Recommendation

Rural Areas

- Stop using NRCS Type II Rainfall Distribution
- Use Atlas 14 Rainfall depth
- Use MSE 3 or Atlas 14 Derived Rainfall Distribution
- Use standard dimensionless unit hydrograph with peak factor of 484 unless conditions on following slide met.
- Route flow (hydrograph analysis) if significant storage, especially right upstream of crossing.

MnDOT Application of NRCS Recommendation

- Rural Areas cont'd
 - Minnesota NRCS recommended methodology
 - MSE 3 rainfall distribution
 - Unit Hydrograph with peak factor of 400
 - Time of Concentration methods per NRCS flowchart
 - MN NRCS MSE 3 MN and Time of Concentration methodology may used for some rural drainage areas when all of the following conditions met:
 - Drainage area is rural
 - Drainage area is not steep
 - Predicted flows are consistent with historical observations at the site.

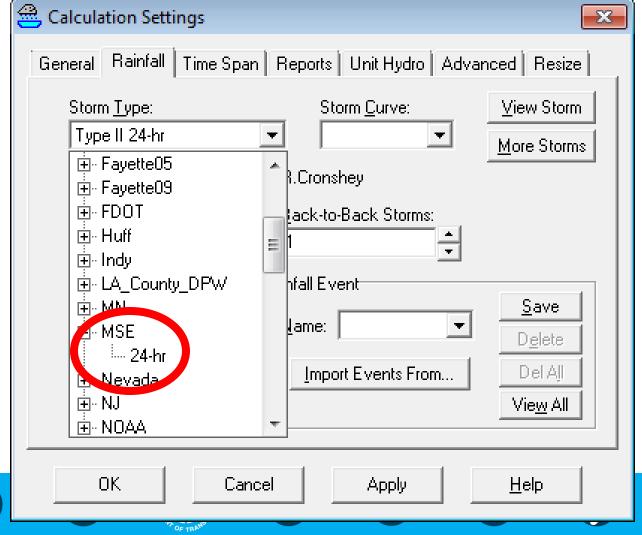
Using Atlas 14/NRCS resources in HydroCAD

Rainfall Depth – use either method below:

- Import rainfall depths from Atlas 14 PFDS server
 helpsheet on web site
- NRCS County file included with HydroCAD 10 Build 15 or higher – slides to follow

Rainfall Distribution - use either method below:

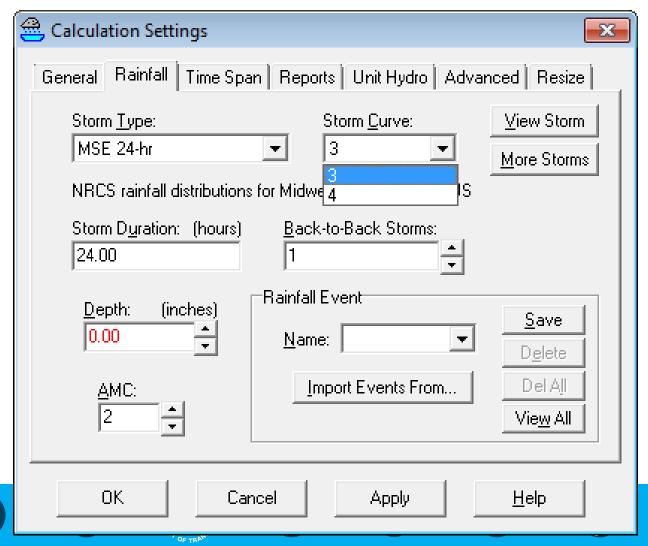
- Import rainfall distribution from Atlas 14 PFDS server – helpsheet on web site
- NRCS MSE 3 rainfall distribution included with HydroCAD 10 Build 14 or higher – slides to follow



Selecting NRCS MSE-3 Rainfall Distribution in HydroCAD

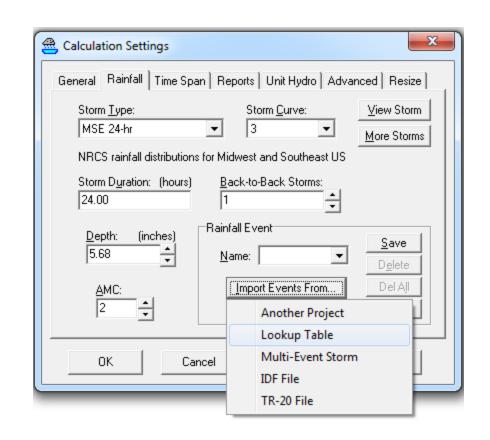
Select
Calculation
Settings
Dialog and
select Rainfall
Tab

Select MSE 24-hr as Storm Type



Selecting NRCS MSE-3 Rainfall Distribution in HydroCAD

Then selectStormCurve 3



Select 24 hour rainfall depth from HydroCAD Lookup File

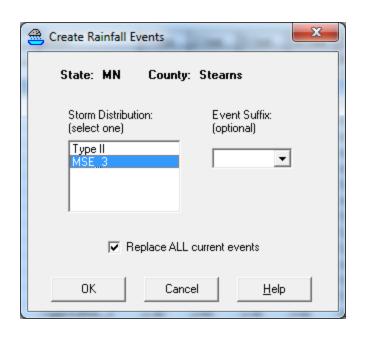
On Calculation Settings dialog/Rainfall Tab

- Go to Rainfall Event and click on Import Events From button
- Select Lookup
 Table

Select 24 hour rainfall depth from HydroCAD Lookup File

On Rainfall Event Lookup Table:

- 1. Select Event Lookup File Atlas-14-Rain.txt
- 2. Find State = MN
- 3. Scroll down and find county
- 4. Click on OK



Select 24 hour rainfall depth from HydroCAD Lookup File

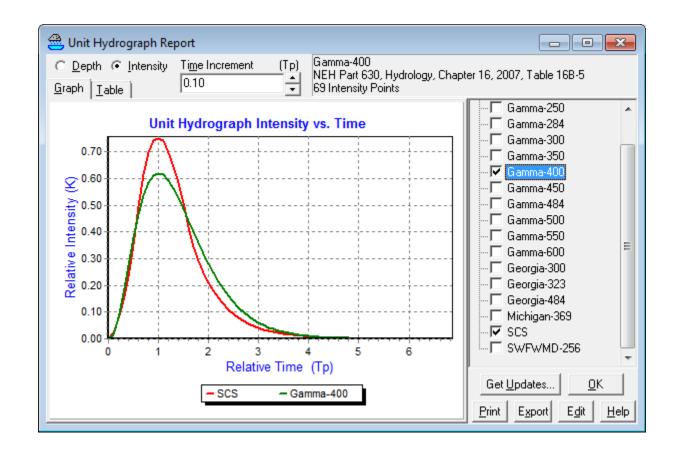
Select MSE 3 as Storm Distribution and OK

Data is from
Minnesota NRCS
County file and is
the spatially
averaged value for
the county.

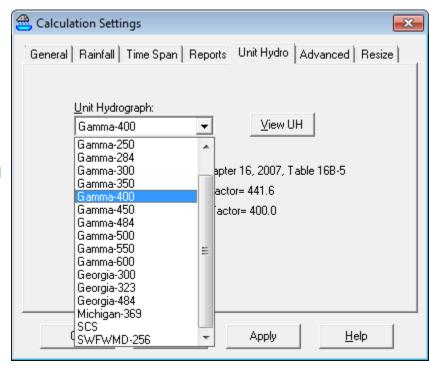
Using NRCS Recommendations in HydroCAD - MSE 3 Rainfall Distribution

Rainfall Distribution	Peak Flow
Atlas 14	162 cfs
NRCS – MSE3	167 cfs
SCS Type II	151 cfs

- Stearns County
- Drainage Area = 100 acres
- ▶ Tc = 64 minutes
- CN = 75
- ▶ 24 hour Rainfall = 5.68 in



Minnesota NRCS - Unit Hydrograph



Selecting Peak Factor 400 Unit Hydrograph in HydroCAD

SCS is the default

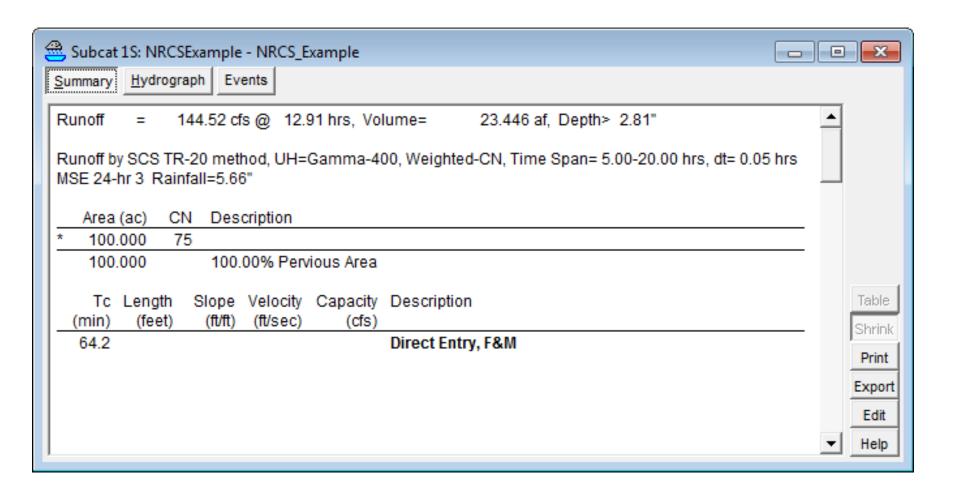
Select peak factor 400 dimensionless unit hydrograph by going to

Settings > Calculation > Unit Hydro

Impact of Unit Hydrograph

Rainfall Distribution	Peak Flow – SCS Unit hydrograph (Peak Factor 484)	Peak Flow – NRCS Peak Factor 400
Atlas 14	162 cfs	
NRCS – MSE3	167 cfs	145 cfs MSE3 MN
SCS Type II	151 cfs	

- Stearns County
- Tc = 64 minutes
- ► CN = 75
- ▶ 24 hour Rainfall = 5.66 in



Review Options in Summary!

Using NRCS Methodology in HydroCAD – versions

- HydroCAD 10 build 15
 - Includes county data file that includes Atlas 14 data for Minnesota counties
- HydroCAD 10 build 14 or higher
 - Includes MSE 3 rainfall distribution
- HydroCAD 10 build prior to 14
 - Can import Atlas 14 rainfall distribution downloaded from PFDS server
 - Includes unit hydrograph with peak factor 400
- HydroCAD version 9
 - Can not import Atlas 14 rainfall distribution
 - Need to develop a custom rainfall distribution for MSE 3 based on data from NRCS

Impact of Rainfall Distribution/Unit Hydrograph

- For Peak Flow method most impact for areas with shorter Time of Concentration
- If route flow, especially if have significant amounts of storage, the unit hydrograph and rainfall distribution used have much less impact

Recommendations

- Stop using NRCS Type II rainfall distribution
- Use Atlas 14 derived distribution or MSE-3 distribution
- ▶ For urban watersheds continue to dimensionless unit hydrograph with peak factor of 484 (default in HydroCAD)
- Document what is used

Recommendations

- Allowable to use NRCS Recommended Method for rural areas – MSE 3 MN
 - MSE 3 Rainfall Distribution
 - Unit Hydrograph with peak factor 400
- Use engineering judgment and continue to use typical SCS unit hydrograph (PF 484) where higher design flow justified:
 - Rural vs Agricultural
 - Climate Change resilience
 - No Storage
 - History of Flooding
 - Critical locations
 - Steepness/flashiness

